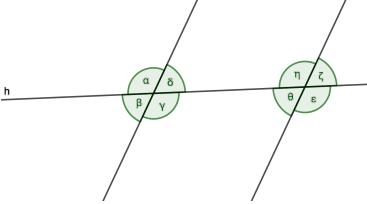


1. Winkelpaare

Aufgabe 1.1:

Wenn Geraden sich schneiden, entstehen Winkelpaare: Scheitelwinkel, Nebenwinkel, Stufenwinkel und Wechselwinkel. Die Geraden f und g sind parallel.

Lernvideo

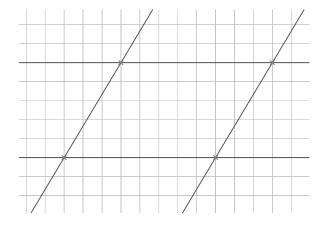

Winkelpaare

 a) Suche für jedes oben genannte Winkelpaar mindestens zwei Beispiele raus.

Bsp.: α und δ sind Nebenwinkel.

b) $\beta = 55^{\circ}$

Bestimme die Größe aller Winkel.



Zeichnung nicht maßstabsgetreu!

Aufgabe 1.2:

Zeichne die vier Geraden in dein Heft, orientiere dich dabei an den vorgegebenen Schnittpunkten

- a) Markiere gleich große Winkel in der gleichen Farbe.
- b) Miss EINEN beliebigen Winkel, bestimme die restlichen durch Winkelpaare.
- c) Kontrolliere dich selbst durch Nachmessen.

Aufgabe 1.3:

Zeichne folgende Punkte in ein Koordinatensystem:

A(-4 | 1) B(1 | 4) C(1 | -2) D(6 | 1)

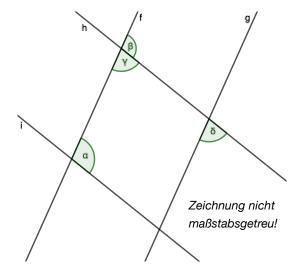
Die Gerade f geht durch die Punkte A und B.

Die Gerade g geht durch die Punkte C und D.

Die Gerade h geht durch die Punkte A und C.

Die Gerade i geht durch die Punkte D und B.

- a) Finde einen Winkel mit der Größe 62° und nenne diesen α .
- b) Benenne den Scheitelwinkel von α als α' , den Stufenwinkel von α als α'' und den Wechselwinkel von α als α''' .
- c) Benenne den Nebenwinkel von α als β , den Scheitelwinkel von β als β , den Stufenwinkel von β als β , den Stufenwinkel von β als β .



Aufgabe 1.4:

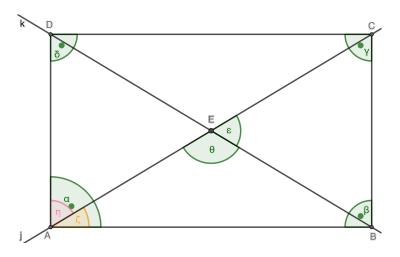
Es gilt f || g und h || i $\alpha = 114^{\circ}$

Wie groß sind β , γ und δ ?

Aufgabe 1.5:

Im Parallelogramm ABCD ist $\beta = 114^{\circ}$

Wie groß sind die Winkel α , γ und δ ?


Begründe deine Antwort mit Hilfe von Winkelpaaren.

Aufgabe 1.6:

Im Rechteck ABCD kreuzen sich die Diagonalen k und j im Punkt E. Dadurch werden vier gleichschenklige Dreiecke mit dem gemeinsamen Punkt E gebildet. $\varepsilon = 64^{\circ}$

Wie groß sind die Winkel ζ und η ?

Griechisches

2. Winkelsumme im Dreieck

Aufgabe 2.1:

Berechne den fehlenden Winkel im Dreieck.

$$\beta = 60^{\circ}$$

$$\beta = 40^{\circ}$$

c)
$$\alpha = 35^{\circ}$$

$$\beta = 45^{\circ}$$

$$\beta = 110^{\circ}$$
 $\gamma = 24^{\circ}$

d)
$$\alpha = ?$$

e) $\alpha = 92^{\circ}$

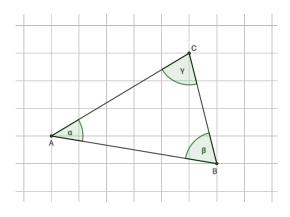
$$\beta = ?$$

$$\gamma = 30^{\circ}$$

 $\gamma = ?$

γ = ?

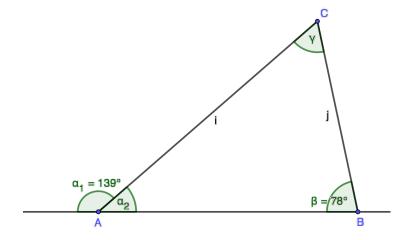
γ = ?



Aufgabe 2.2:

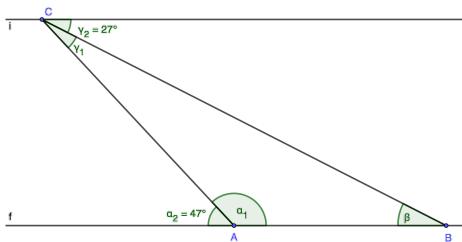
Zeichne das Dreieck ab, achte dabei auf die korrekte Anzahl der Kästchen.

Miss die Winkel und überprüfe deine Messung mithilfe der Winkelsumme.



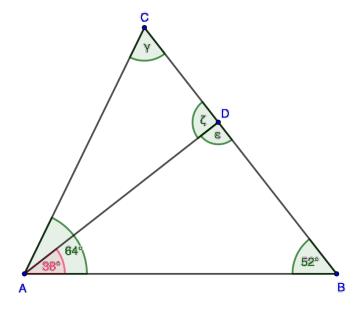
Aufgabe 2.3:

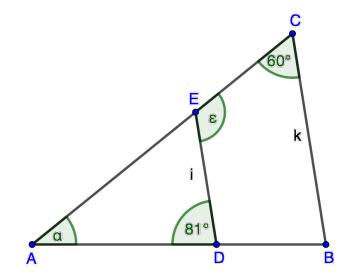
Berechne die fehlenden Winkel.


a)
$$\alpha_2 = ?$$

$$\chi = ?$$

$$\alpha_1 = ?$$


$$\gamma_1 = ?$$



- c) y = ?
 - $\varepsilon = ?$
 - $\zeta = ?$

- d) $i \parallel k$
 - $\alpha = ?$
 - $\varepsilon = ?$

Aufgabe 2.4:

Zeichne die Punkte $A(-3 \mid -2)$ $B(2,5 \mid -1)$ $C(0 \mid 4)$ in ein Koordinatensystem und verbinde sie zu einem Dreieck.

- a) Miss die Winkel und überprüfe deine Messung mithilfe der Winkelsumme.
- b) Miss auch die Seitenlängen, was fällt dir auf?
- c) Wo müsste Punkt B' sein, damit alle drei Winkel gleich groß sind?

Lösungen